CIENTIFIC RESEARCH

FOR THE USE OF

REINFORCED CONCRETE IN BUILDINGS

28 A 48

1962

REINFORCED CONCRETE IN BUILDINGS

MINISTRY OF SCIENTIFIC RESEARCH

BUILDING RESEARCH CENTRE

CODE OF PRACTICE FOR THE USE OF

CONTENTS

	Page
1. Introduction.	1
1-1 Scope.	1
1-2 Definitious.	1
1-3 Notations.	1
1-4 Kinds of concrete.	6
1-4-1 Hand Mixed concrete.	6
1-4-2 Machine Mtxep concrete.	7
1-4-3 Special Concrete.	7
1-4-4 Dense Concrete.	9
1-4-5 Minor Concrete.	9
2. Materials.	10
2-1 Aggregates.	10
2-2 Cement.	10
2-3 Water.	10
2-4 Reinforcement.	11
3. Design	12
3-1 Basis of Design.	12
	12
3-2-1 Remarks on Primary Loads.	12
3-2-2 Temperature and Shrinkage. Ince 1954	13
3-3 Maximum Allowable Stresses.	14
3-4 Slabs.	16
3-4-1 Oneway Slabs.	16
a. Spans.	16
b. Minimum Thickness.	16
c. Bending Moments.	16
d. Reinforcement.	17
e. Supports.	18

3-4-2	Two Ways Slabe.	Page	4-1-2	Aggranatas
3-4-3	Ribbed and Hollow-Block slabs.	18	4-1-2	Aggregates. Measuring of Ma
a.	General Remarks.	19	4-2	Coment
<i>b</i> .	One-way Ribbed slabs. (Ribs in one direction)	19	4-2-1	
с.	Two-Way Ribbed Slabs. (Ribs in two directions)	20		Aggregates.
3-5	Flat Slabs. (Riss in two directions)	20	4-2-3	Mixing Water.
3-5-1	Notations.	21	4-3	Formwork.
3-5-2	Minimum Dimensions.	21	4-3-1	Making and Ere
3-5-3	Design of Flat Slabs as Continuous Frames.	21	4-3-2	Stripping.
3-5-4	Empirical Design of Flat OL 1 - C -	22	4-4	Detailing.
	Empirical Design of Flat Slabs Subjected to Uniformly Distributed Load.	A.	4-4-1	General Remarks
3-5-5		24	4-4-2	Layout and Dim
3-5-6	Bending Moments in Panels with Marginal Beams. Bending Moments in Columns.	25	4-4-3	Reinforcement.
3-5-7	Arrangement of Reinforcement in Flat Slabs.	26	a.	Sizes of Bars.
3-6	Beams.	26	ь.	Cleaning.
3-6-1	Considerations for Design.	27	с.	Bending.
a,	Spans.	27	d.	Placing and Fixi
b.	Loads.	27	e.	Cover of Concre
с.	Effective Breadth of T-Beams.	27	f.	Clear Distance b
d.	Limitations.	28	g.	Anchorage.
e.	Bending Momemts.	28	h.	Splicing of Bars
f.	Diagonal Tension.	29	Jos Silli Sér Illa	Tension Reinfor
g.	Torsional Stresses.	30	4-4-4	Permanent Joint
h.	Bond Stresses.	Hissing & Building Nation	al Research Center	Concreting.
3 6-2	General Remarks.	33	4-5-1	Mixing.
3-7	Columns.	33	4-5-2	Transport to Pla
3-7-1	Axially Loaded Short Columns.	35	4-5-3	Placing Concrete
3-7-2	Buckling of Long Columns.	35	4-5-4	Compacting.
3-7-3	Details and Remarks.	35	4-5-5	Casting Joints.
3-7-4	Bending Moments in Columns.	36	4-5-6	Protecting and
Л		37	4-6	Loading Tests.
4.	Construction.			
4-1	Storing of Materials.	39		
4-1-1	Cement,	39		

Page Materials Frecting Fermwork. rks. imensions of Concrete Members. ixing. crete. between the Bars. ιrs. forcements at Corners. nts. Place of Casting. ete. Curing of Concrete.

1 - INTRODUCTION

1-1 Scope :

The following code of practice covers the use of normal reinforced concrete in ordinary structures. They are intended to supplement the general provisions for materials, design and construction. Special reinforced concrete structures such as bridges and fluid containers, are to be dealt with in corresponding special codes. The design and execution of reinforced concrete work are entrusted only to qualified persons, for whom this code of practice is issued as rules and guidance.

1-2 Definitions :

Concrete : A suitably proportioned mixture of aggregate, cement and water.

Reinforcement : Rods, bars or fabric of structural steel, embedded in concrete for the purpose of resisting particular stresses.

Plain Concrete : Concrete without reinforcement.

Reinforced Concrete : Concrete in which reinforcement is embedded in such a manner that the two materials act together in resisting the loads.

مهر ليحوث الاسكان والين

Housing & Building National Research Center

Since 1954

1-3 Notations :

- A : Area.
- A_c : Area of concrete.
- A_s : Area of steel.
- A's : Area of steel in compression side.
- A_k : Area of core.
- A_{st} : Area of stirrups.
- A sp : Area of spiral.
- A_{sh} : Area of bent bars.
- N.A. : Neutral axis.

z=Ed : Depth of neutral axis from compression fibre.

- : Depth of R.C. section. d
- : Total depth. t
- : Breadth of a rectangular section or web of T-section. b

- 2 --

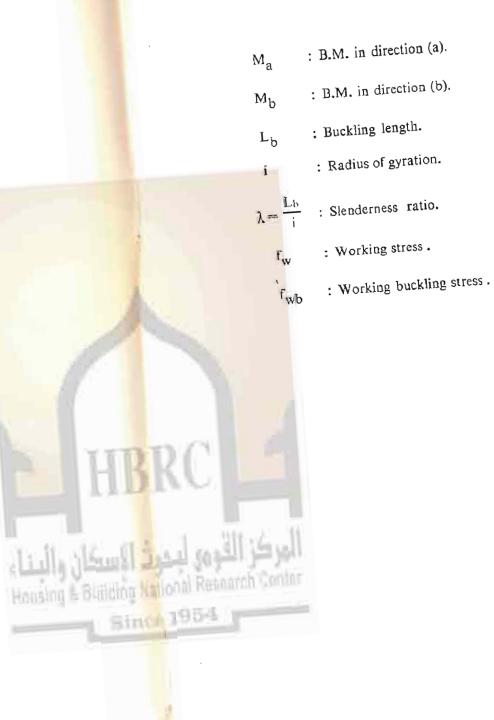
- : Breadth of a flange of T-or L-section. B
- : Reduced breadth of a flange of T-or L-section. Br
- : Breadth of haunches. bs
- : Thickness of slab. 1_S
- : Eccentricity from c.g. C
- : Eccentricity from tension stcel. es
- : Eccentricity from compression steel. e's
- Cc : Total compression in concrete.
- Cs : Total compression in compression steel.
- С : Total compression in section.
- : Total tension in steel. T
- Yct=Jd : Lever arm.
- : Depth of compression steel. ď
- : Ratio of tension steel. μ
- µ'
- : Ratio of compression steel. $\left(\mu' = \frac{A's}{b.d}\right)$
- : Ratio of compression steel to tension steel. 8
- : Area of virtual section. $(A_v = Ac + nAs)$ Av

 $\left(\mu = \frac{As}{b.d}\right)$

- : Statical moment of area. S
- Sv : Statical moment of virtual area.

i : Moment of inertia.
I_v : Moment of inertia of virtual area.
I _{xy} : Product of inertia.
I _p : Polar moment of inertia.
E_c : Modulus of elasticity of concrete in compression.
E _s : Modulus of elasticity of steel.
E_t : Modulus of elasticity of concrete in tension.
E _{co} : Initial modulus of elasticity of concrete.
$n = \frac{E_s}{E_s}$, Modular ratio.
E _c : Poissons ratio.
f : Stress.
ε : Strain.
f _c : Concrete stress in compression.
f _t : Concrete stress in tension.
f _s : Steel stress in tension.
in a building for and the part Call f _y : Yield stress in steel.
Since 1954 fu : Ultimate stress.
C _{cu} : Ultimate cube strength.
C_p : Prism strength.
ε_{u} : Ultimate strain in concrete.
ε _{sh} : Free shrinkage strain for concrete.
ε _{cr} : Creep strain.

مرى ليحرف السكان والبغ


Housing & Building Neuronal Research.

- 3 -

- L : Effective span.
- L_o: Clear span.
- P : Concentrated live load.

- 4 ---

- p : Distributed live load.
- G : Concentrated dead load.
- g : Distributed dead load.
- W : Concentrated total load.
- w : Distributed total load.
- M : Bending moment.
- Q : Shearing force.
- N : Normal force.
- q : Shear stress.
- q_{st} : Shear stress taken by stirrups.
- M_R : Moment of resistance.
- 9b : Bond stresses.
- ϕ : Diameter of bars.
- r : Radius of bar.
- M_t : Twisting moment.
- G : Modulus of rigidity.
- a : Shorter span of slab.
- b : Longer span of slab.
- w_a : Distributed total load in direction (a) of a slab.
- w_b : Distributed total load in direction (b) of a slab.

