HYDRATION MECHANISM OF TRICALCIUM ALUMINATE WITH LIME AT 1:1 MOLE RATIO AT LOW WATER/SOLID RATIO AND IN SUSPENSION

F.H. MOSALAMY and M.A. SHATER

Building Research Institute, Dokki, Cairo (Egypt)

H. EL-DIDAMONY and R. EL-SHEIKH

Faculty of Science, Zagazig University, Zagazig (Egypt)

(Received 16 September 1983)

ABSTRACT

The hydration mechanism of tricalcium aluminate C₃A with CaO at 1:1 mole ratio was studied in paste as well as slurry from 5 min up to 7 days of hydration. These studies were made with the aid of X-ray diffractometry, differential thermal analysis and thermogravimetric analysis. The results illustrate that the hydrate phases C₄AH₁₃ and C₃AH₆ are still formed in the paste and slurry hydrations from 5 min up to 7 days. It was concluded that the free Ca(OH)₂ is also found in the two hydrated systems after 7 days. The amount of C₃AH₆ is maximum at 24 h and then decreases, whereas the amount of C₄AH₁₃ increases with curing time.

INTRODUCTION

The quaternary system comprising CaO, Al₂O₃, SiO₂ and Fe₂O₃ as well as H₂O are of importance in studying the chemistry and morphology of hydrous calcium silicates and aluminates in hydrating cement. Portland cement is composed of four major phases: tricalcium silicate C₃S, B-dicalcium silicate B-C₂S, tricalcium aluminate C₃A, and tetracalcium aiuminoferrite C₄AF. C₃S and B-C₂S liberate Ca(OH)₂ during the hydration of portland cement. It has been pointed out by some workers, such as Forsen [1], Seligman and Creening [2], Mori [3], Stein [4] and Copeland and Kantro [5], that calcium hydroxide liberated from the hydration of calcium silicates controls the formation of ettringite even in the early stage of C₃A hydration. Tricalcium aluminate [6] reacts with excess water to form C₂AH₈ and either or both C₃AH₆ and C₃A. Ca(OH)₂ 12 H₂O · C₂AH₈ reacts with Ca(OH)₂ to form C₄AH₁₃ or C₃AH₆, depending on the hydration conditions.

The aim of the present investigation is to elucidate the hydration mechanism of C₃A in the presence of Ca(OH)₂ (1:1 mole ratio) in paste and in